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The problem of the restoration of an a priori unknown feedback which operates in a dynamical controlled system is considered. 
The restoration is achieved using results of observations during the motion of this system and approximate measurements of its 
actual phase positions. It is well known that this is an ill-posed problem. Two methods are proposed for solving it: a static method 
and a dynamic method. When solving the problem using the static method, the results of approximate measurements of the actual 
phase positions of the system in any given time interval serve as the input information. Here, restoration is achieved "a posteriori" 
when the corresponding time interval for the observation of the motion using the whole totality of admitted information expires. 
The concepts of the theory of preset control and the theory of ill-posed problems are invoked to solve the problem by this method. 
When the problem is solved by the dynamic method, the results of instantaneous approximate measurements of the actual phase 
positions of the system, which proceed to the observer in the dynamics during some specified time interval, serve as the input 
information for the solution. Here, the measurements and restoration are achieved in the dynamics over the course of the process 
using the real-time information. Concepts of the theory of positional control and the theory of dynamic regularization are invoked 
by the dynamic method. Constructive, stable, regularizing algorithms are built in order to solve the restoration problem by this 
as well as by the other method. Moreover, the dynamic algorithms are physically feasible and are capable of working under real- 
time conditions, processing the information which is being received during the course of the motion of the system and feeding 
the result into the dynamics as the motion develops. �9 2006 Elsevier Ltd. All rights reserved. 

Feedbacks in a dynamical system can be unknown a priori and must be determined (restored, 
reconstructed or identified) as a result of observations on the object. The restored feedback can then 
be used for operational control or more adequate modelling. 

We will point out certain features of the static and dynamic approaches to the problem being 
considered. In the case of the static approach to solving the problem, the data for the calculation are 
known a priori, the restoration algorithm does not take account of any possible changes in these 
parameters during the calculation, and the calculation process itself is not, in general, a single process 
and it may be necessary to repeat it. However, in certain engineering and scientific developments, the 
need often arises to carry out restoration at the same time as the development of the process. In this 
case, the data for the calculations can only be received during the course of the process and now depends 
on how the restoration was carried out in the past. Similar problems are encountered in the mechanics 
of flight control and in problems of the operational development of information during the development 
of technological and production processes. 

Problems of this kind for dynamical systems have been studied in different formulations in control 
theory, the game theory and the theory of estimation and identification [1-4]. The formulations with 
which we are concerned in this paper, as well as the methods for solving the problems are based from 
a conceptual point of view on the approaches of preset and positional control [1-7] and the approaches 
of the theory of ill-posed problems [8-10]. 

tPrikl. Mat. Mekh. Vol. 69, No. 6, pp. 962-975, 2005. 
0021-8928/S--see front matter. �9 2006 Elsevier Ltd. All rights reserved. 
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1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We will now describe the information side of the problem and consider a dynamic control system, the 
behaviour of which in a specified bounded time interval T = [to, O] (-oo < to < O < +oo ] is described 
by the system of ordinary differential equations 

Yc(t) = f ( t , x ( t ) )+uI t ] ,  t o<t<O,  X(to) = x0; x(t), u[t]~ R n (1.1) 

where x(t) is the state vector of the system at the instant of time t ~ T and u[t] is the vector of the 
controlling action on the system at this instant of time. The action u[t] is based on the feedback principle. 

u[ t ]  = A ( t ) x ( t ) + b ( t ) ,  t o < t < O  

where A(t) is a certain n x n matrix and b(t) is a certain n-dimensional vector, defined for the instants 
of time to -< t < tS. 

Suppose the motion of the system is observed over a time interval T and the states of the system x(t) 
are approximately measured at the corresponding instants of time t ~ T while, at the same time, the 
results of these measurements y(t) satisfy the following criterion for the accuracy of the measurements 

IIx(t)  - y(t)ll --- 5, t ~ T 

where H" II is the Euclidean norm inR n and 5 is a numerical parameter  which characterizes the accuracy 
of the measurements, 0 ___ 5 ___ 50. 

The problem is as following. Using the results of the approximation measurements y = y(t) of the 
motion of the system which is being observed x = x(t), it is required to recreate approximately a form 
of the matricesA = A(t) and the vectors b = b(t) which determine the feedback and correspond to the 
results of observations. Here,  the resultA~ = As(t) of the recreation of the matricesA = A(t) and the 
result bs = b~(t) of the recreation of the vectors b = b(t) must be more accurate the smaller the errors 
in the measurements. 

~lllA(t) - A~(t)lllZdt --* 0 

~llb(t) - bs(t)llZdt ~ O, 5---)0 

Unless otherwise stated, all the functions are considered when t ~ T and integration with respect to 
t is carried out over the interval T; II1111 is the Euclidean norm for the matrices R n • n. It is assumed 
that the matrices and vectors determining the feedback are unknown a priori; only certain a priori 
estimates of them are known the equations of the dynamics of the process and the initial state of the 
system are also known. We shall subsequently treat this problem as a problem concerning the 
reconstruction of a feedback. 

The second aspect of the problem is associated with the restoration of an unknown feedback under 
conditions when measurements of the state of the system and the recreation of the required quantities 
determining the feedback must be carried out dynamically. Here, the problem consists of approximately 
recovering, throughout the course of the process, a form and the dynamics of the quantitiesA = A(t), 
b = b(t) determining the feedback which corresponds to the observation results using the results of 
approximate m e a s u r e m e n t s  ofy(ti) at the corresponding discrete instants of time t i ~ T of the actual 
states of the system x(ti) which become available to the observer. Here, the restoration must be more 
accurate the smaller the errors in the measurements and the more frequently the measurements of the 
states of the system are carried out, that is, the condition 

-As(t ll I [ A----)0 j.IIIA /  2 

must be satisfied by the results of the dynamic restoration of the required quantities A~ = A~ (t) and 
b~ = b~ (t), where A is the diameter of the partitioning of the interval T by the points ti, for which 

t o < t l < . . . < t i < . . . < t m _ l < t m  = 0 
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The diameter of the partitioning A will, as a rule, be chosen depending of the magnitude of the error 
in the measurements 6. In this dynamic formulation, it is also assumed that the matrices and vectors 
determining the feedback are unknown a priori, only certain a priori estimates of them are known and 
the equations of the dynamics of the process and the initial state of the system are also known. 

We will now give a mathematical formulation of the problem. Suppose a funct ionf  is continuous in 
the set T x R n and, in this set, satisfies the condition of sublinear growth and a local Lipschitz condition 
with respect to the variable x (see [5, 7, 11], for example). Suppose P is a convex, closed, bounded set 
of matrices from the space R ~ • n, U is the set of all measurable mappingsA = A(.): T---) P, Q is a convex, 
bounded, closed set of vectors from the space R n and Vis the set of all measurable mappings b = b('): 
T ~ Q. The set of pairs of elements w = (A, b) e W = U x V determines the set of permissible feedbacks 
in the problem being considered and we shall sometimes refer to the element w ~ W simply as the 
feedback. For each element w ~ 14/, a unique solution x(-) = x(.; w) = x(t; w) of the Cauchy problem 
(1.1) exists which is absolutely continuous in the interval T. We shall sometimes call this solution the 
motion of the dynamical system (1.1) which is generated by the feedback w s W. 

We now introduce the set of all possible solutions of the Cauchy problem (1.1) corresponding to the 
feedbacks w e W 

X = {x(.) = x(.; w) : w e W} 

For each motion x(.) E X, we introduce the set of all permissible feedbacks corresponding to the 
given motion 

W(x(.)) = { w e  W : x ( . )= x(.; w)} 

and the set of all possible measurements of this motion 

Y(x(.) ,8) = { y e  L2(T; R n) : llx(t)-y(t)l[ <~1} 

The problem consists of constructing an algorithm which, using any permissible measurements of the 
states of the observed motion of the system, approximately recovers the feedback of the system, which 
is in accord with the results of the observations of the motion. We identify the required algorithm with 
the family of mappings (methods) 

D = { D 8 : 0 < 8 < ~ 0 } ,  D~:Lz(T;Rn)---~E = L2(T;RnXn) x L ~ ( T ; R  n) 

The initial problem can now be formulated as follows: it is required to construct an algorithm 
D = {D~ : 0 ___ 8 <_ 80} which, for any observed motion x(.) ~ X, possesses the regularizing property: 

r s (x( . ) ) -*0 ,  8--)0  

rs(x(.)) = sup{o[Ds(y ), W(x(.))] : y ~ Y(x(.), 8)} 

ptDs(y), W(x)] = min{ l lDgy) -wl l e :w  ~ W(x)} 

Before proceeding to solve this problem, we will point out several algebraic and topological properties 
of the motions of a system and the sets which have been introduced into the treatment. The set W is 
convex, bounded and closed, and it is therefore weakly compact in the space E, X is compact in the 
space C(T; Rn), for each x(') ~ X the set W(x(')) is non-empty, convex, bounded and closed, and it is 
therefore weakly compact in the space E and has a unique element w,(x(.)) of minimum E-norm; if 
wk -7 w weakly in E, then the strong convergence of the motions xk(') = xk('; wk) --+ x(') = x('; w) in 
the space C(T; R n) holds and all the more in the space L2(T; Rn). It follows from this last property, in 
particular, that the mapping 

E D W a w ---> x(., w) ~ X c L2(T; R ~) 

is completely continuous and therefore cannot have a continuous inverse mapping even if it is considered 
as a multiple-valued mapping. The ill-posed nature of the restoration problem follows from this, and 
also the need to use regularization methods to solve it. All of the numerical quantities and spaces 
considered in this paper are assumed to be real, mensurability and integrability are understood in the 
Lebesgue sense, and the definitions of the functional spaces used can be found in [ 11, 12], for example. 
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2. S O L U T I O N  OF T H E  R E S T O R A T I O N  P R O B L E M  BY 
T H E  STATIC M E T H O D  

We will construct the required algorithm. For any 8 e [0, 80], Y �9 Lz(T; Rn), we define a realization of 
the method DS(y) using the rule 

Da(y ) = "O e W: F*(y) < Fa(rl; y) < F*(y) + ~ 

F*(y) = min{Fc~(s; y)"  s �9 W}, Fa = F=("O; y) = ~llx(t; "O) -y(t)ll2dt + oql-oll~ 
(2.1) 

(2.2) 

where a = c~(8) is a positive regularization parameter  of the problem, ~ = e(8) is a non-negative 
parameter, which characterizes the accuracy of the solution of extremal problem (2.1) and it will also 
be a regularization parameter. 

Theorem 1. Suppose the regularization parameters o~ = eft6) and e = e(~5) satisfy the following 
compatibility conditions 

(E(a) + 82)a(8) -~ ~ 0, E(8) ~ 0, cz(8) -~ 0, 8 ~ 0 

The, the algorithm D, consisting of the methods (2.1), solves the restoration problem, that is, for any 
observed motionx(.)  e Xwhen  8 ---> 0, the convergence ra(x(')) ---> 0 holds and, furthermore, the strong 
convergence "Oa ---> w,(x(')) in E holds for the realizations of the algorithm qa = Da(ya) when 
8 ---> 0 whatever realization of the measurementsya e Y(x('), fi) is the case here. 

Proof. We specify an arbitrary element x(') �9 X and any dependences cz = cz(g) and e = e(g) which 
satisfy the condition of the theorem. For prove the theorem, it is sufficient to show that whatever the 
numerical sequence {ilk} C [0, 80], 8k ---> 0 and the sequence of elements {Yk}, Yk �9 Y(x('), 8k), 
k �9 { 1, 2, 3 . . . .  }, the following convergence holds 

p[Da~(yk), w, (x( . ) ) ]  --> 0, k ---> ~ (2.3) 

Suppose the sequences {Sk} and {Yk} described above are chosen and fixed. We will now show that 
relations (2.3) hold. Taking account of the definition of the elements "Ok = Dak(Yk) �9 W, we can write 
the chain of inequalities 

Fa(a0(-ok; Yk) <- F*(ao(Yk) + E(ak) <- Fa(ao(w,(x( ' )  ); Yk) + ~(~k) <- 

t0)a k + ~(aa)llw,(x(.))l l~ + E(a~) -< j'llx(,)- y,(t)l} zdt + ~(a011w,(x(.))ll~- + e(a,) < ( ~ -  2 

from which we obtain the inequality 

2 - I  
I]-o~ll~ -< ( o -  t0)ak~(ak) + E ( a 0 ~ ( a 0 - '  + IIw,(x(.))ll~ (2.4) 

The boundedness of the sequence {rlk} in the reflexive Banach space E follows from this inequality 
by virtue of the choice of regularization parameters, and it is therefore possible to separate out from 
the sequence {"Ok} a subsequence which weakly converges to a certain element -O* �9 E. Without loss 
of generality, we can assume that this sequence itself converges weakly in E to the element "O*. 

We will show that -ok ---> 11" strongly in E and that -O* = w, = w,(x(.)). The following chain of 
inequalities 

Illx(t; 11") - x(t; w,)ll2dt = liminfIllx(t; "Ok) - yk(t)ll 2dt <<- liminfFa<a0("Ok; Yk) < 

t0)Sk + E(~k) + ~(801lw,l l~]  = 0, k ~ oo < lira supFa(aO(rl~; Yk) < l im sup[(t~ - 2 

holds from which the following equality and inclusion are obtained 

Illx(t; l"l*)-x(t; w,)lladt = O, 11" �9 W(x(.)) (2.5) 
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From relations (2.4) and (2.5), we additionally obtain 

, 2  . . 2 <  �9 2 W 2 ,  I w ,  e-2 < I1~ l i e -  < hmmfllrlklle- llmsupllrlkllE-< II ,lie k ~ o o  

whence we conclude that 

. 2 , 2 
hmll~klle = IIn lie = tlw,ll~, k - ~  

Then, by virtue of the uniqueness of the element of minimum E-norm in the set W(x(.)),  we obtain the 
equality rl* = w. and, by virtue of the reflexivity of the Banach space E, we obtain the strong convergence 
rlk ~ w, in the space E from the weak convergence of the elements and the convergence of their norms. 
Hence, the convergence (2.3) holds. 

Any minimization method can be used to solve extremal problem (2.1). As an example, we shall use 
the gradient projection method (see [13, 14], for example). We initially calculate the gradient of the 
functional (2.2), assuming that the components of the vector funct ionf  are continuously differentiable 
with respect to x in the set T x R n. 

Since an element y ~ Y(x(') ,  8) in the functional Fch(w; y) will subsequently remain fixed, for brevity 
we shall denote this functional simply by Fa(w). We now fix an arbitrary element w = (A, b) ~ W and 
add an arbitrary increment h = (Ah, bh) ~ E to it. The difference in the motions 

z(.) = x(.; w+h)-x(.; w) 

then satisfies the Cauchy problem 

s = J(t,  x ( t ) ) z ( t )  + Gl(x( t ) ,  z ( t ) )  + G2(x(t) ,  z ( t ) ) ,  t ~ T, 

G! (x(t) ,  z ( t ) )  = f ( t ,  z( t)  + x ( t ) )  - f ( t ,  x ( t ) )  - J(t ,  x ( t ) ) z ( t )  

G2(x(t) ,  z ( t ) )  = A( t ) z ( t )  + Ah( t )z ( t )  + Ah( t )x ( t )  + bh(t) 

Z(to) = 0 

where x(') = x('; w), and J(t, x( t))  is the Jacobian of the vector function f(t ,  x) with respect to x. 
The increment of the functional can be represented in the form 

Fa(w + h) - Fa(w ) = 2I t + 12 + 2~(w, h)e+ cxllhll2e 

I, = ~ ( x ( t ) - y ( t ) , z ( t ) ) d t ,  12 = fllz(t)ll2dt 

The first integral in this equality can be converted to the form 

2In = Il l  + It2 + It3 

Ill = f ( u  Ah(t)x(t ) + bh(t))dt 

I12 = f ( Ig( t ) ,  Ah( t )z( t ) )dt ,  Ii3 = f ( Ig ( t ) ,  Gl (x( t ) ,  z ( t ) ) )d t  

where ~(.) = ~(-; w) is the solution of the following linear problem, which we shall henceforth call the 
adjoint of problem (1.1) 

fg(t) = - J*(t ,  x ( t ) ) ~ ( t )  - A * ( t ) ~ ( t )  - 2(x(t) - y( t ) ) ,  ~(O) = 0 

An asterisk on a matrix denotes the matrix which is the adjoint of it. 
From the conditions which the parameters of the problem satisfy, it follows that a constant C > 0 

exists such that the inequalities 

12 <_ CIIhll 2, 112 -< CIIhll 2, I13 < CIIhll 2 

hold for any motions x(.) e X, feedbacks w e W, numbers 8 e [0, 80] and measurementsy e Y(x(') ,  8). 
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The linear part of the increment in the functional can be represented in the form 

= I ( ( a [v ( t ) ,  x(/)], ah( t ) ) )d t  + I ( V ( t ) ,  bh(t))dt = (g, 111 h)E 

g = (A[~,x] ,~)  ~ E, A[~,x] = A[~(t),x(t)] 

where ((., .)) is a scalar product in R nxn and A [~(t), x(t)] is the contraction of the two vectors W(t) and 
x(t) into a matrix with elements 

A[~(t), x(t)]ij = ~lli(t)xj(t), i, j e { 1 . . . . .  n} 

From the estimates and representations which have been found, we obtain 

Fa(w + h) - Fa(w)  = I (g + 2t~w, h)edt + o(]lhlle) 

This means that the functional F~ is Frechet differentiable at each point and 

F~(w) = g + 2otw e E 

and 

[o(llhlle)[ <-CJhll 2, Ca = 3c+ t~  

Calculation of the gradient F~,(w) reduces to the sequential execution of the following actions: solving 
the direct problem and finding its solution x(.) = x(-; w), solving the adjoint problem and finding its 
solution ~ = ~(.; w), calculating the matrixA[~, x] and constructing the element g + 2aw, which is 
also the required gradient. 

We note several general properties of the gradient and of the minimization problem 

Fa(w) ---) min : w e W (2.6) 

The gradient satisfies the Lipschitz condition in W, and its non-linear part F~(w) = g is the weakly-strong 
continuous mapping E D W ~ E. The functional Fa is bounded in W; any set of it of the level 

Ma(z  ) = { w e  W :  F a ( w ) < F a ( z ) }  

is bounded and weakly compact in E; it is weakly semicontinuous from below in W and reaches its 
minimum value 

F* = min{ FrL(w) : w e W} 

which is non-negative and finite, in W; the set of all elements 

W* = { w ~  W : Fa (w)=  F*} 

which minimize the functional Fa is non-empty and weakly compact in E; any minimizing sequence of 
problem (2.6) converges strongly in E to the set 14~; for any z e W the set 

S*(z)  = { w e  Ma(z)  : (F~(w),  v - w ) E > O  V1)~ W} 

of all stationary points of the functional from a set of level Ma(z) is non-empty and weakly compact in 
E and, if, for any z e W, the set 

S~ = {w ~ M~(z) : Fi~(w) = O} 

is non-empty, then it is compact in E. 
We will now consider the iterative process of the gradient projection method (k = 0, 1, 2, ...) for 

minimization problem (2.6) 

I 

Wk+ 1 = Pr(wk-~lkFa(wk)) ,  Woe W, a l<) 'k<2/ (L+2ff2)  
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where t~ 1 and (Y2 are positive numbers which are the parameters of the method, L is the Lipschitz constant 
of the gradient Fh in the set W and Pr is a projection operator  in W (the projection exists and is unique). 

Theorem 2. Whatever the initial approximation w0 ~ W, the sequence {wk} of the gradient projection 
method is a relaxation sequence and weakly converges in E to the set S*(wo). Furthermore, the following 
convergences hold 

[tWk+l-wkll --,0, k--->~, 

If the inclusion z* ~ W holds for a certain Wo ~ Ms(z*) C_ W, then we additionally have the strong 
convergence in E 

, 0 
F~(w D ~ O, w k ---> S~(wo), k ~ o~ 

Moreover, if the inequality 

IIFh(w)l[ _> d(Fa(w ) - F*~) 

is satisfied for a certain constant d > 0 in the elements w ~ M~(w0), then the sequence {Wk} is a 
minimizing sequence and the following estimate of the rate of convergence for the functional holds 

O<Fa(w k ) - F * < C * k  -1, k = 1,2 . . . . .  C* = cons t>0  

The proof of the theorem is analogous to the proof of similar assertions [13, Theorems 8.4.1 and 8.4.2]. 

3. S O L U T I O N  OF T H E  R E S T O R A T I O N  P R O B L E M  BY 
T H E  D Y N A M I C  M E T H O D  

The corresponding justifications and various examples of interesting inverse problems in which it is 
important to obtain dynamic solutions are presented, for example, in [1, 15-30]. In the required algorithm 
D, which must solve the restoration problem, we identify each method Da with a family of mappings 

= t R"  R n D s {D~:to<t<_O }, D~: x - - ) P x Q  (3.1) 

We call the function w~ = w~(';y) : [to, O] -~ P x Q which is defined by the equality 

ws(t) = Dt~(y(t), z(t))  

the realization of algorithm D for the measurementy E Y(x(.), 5) and we denote it by the symbol D~(y). 
Sometimes, we shall detail this notation D~(y) = (A~(.), b~(.)). Here, the variable z is an internal variable 
of the algorithm. Its value z = z(t) at the instant of time t is uniquely formed on the basis of the 
permissible informationy(x), to < x < t concerning the motion of the system which has been accumulated 
up to this instant of time. We will formulate a rule for forming the variable z = z(t) below when we 
consider the actual method for constructing the algorithm. 

The initial problem can now be formulated as follows: it is required to construct an algorithm D which 
consists of the methods (3.1) and which, for any observed motion x(.) ~ X, possesses the regularizing 
property r~(x(.)) --> O, 5 --> O. 

We will now construct the algorithm which solves the above problem. To construct the required 
algorithm we will make use of the method of dynamic regularization with the model described earlier 
in [1, 15]. Such a hypothetical unit as a model of the initial system will participate in the constructions. 
Using this model, the values of an auxiliary internal variable for the corresponding algorithm will be 
formed. However, this hypothetical model can be implemented quite practically on a computer. 

n n t For any t ~ T, 5 ~ [0, 50], y ~ R ,  z ~ R ,  we define the mappings D~ at a point (y, z) according to 
the rule 

D~(y,z) = 11 = (A n , bq )~  P x Q  

H(rl) < min{H(s) : s = (A s, bs) ~ P x Q} + e(5) (3.2) 

H(s) = 2(z - y, AsY + bs> +  (5)(lllAslll 2 + Ilbslt =) 

where e = e(5) and tx = r are positive regularization parameters. 
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We define the value z( t )  of the internal variable z for the instant of time t ~ T as the value at this 
instant of the solution of the Cauchy problem for the system-model 

~(x) = f ( x , z ( x ) )  + A ~ ( x ) z ( x )  +b~(x ) ,  t o ~ x ~  t, Z(to) = x o 

The solution of this Cauchy problem, from a practical computational point of view, is conveniently 
carried out using a discrete scheme which is similar to the way that ordinary differential equations are 
solved using the Euler scheme [7]. In this connection, we shall describe the operation of the algorithm 
of restoration in the dynamics in a scheme which is discrete in time. 

Any relations e = ~(8) and a = (x(8) and any partitioning of T into intervals [t 0, t l)  . . . .  , [ti, ti + 1) . . . .  , 
[tm-1, O] by the points ti : to < tl < ... < tm = O are initially specified, The diameter of this partitioning 
will be chosen depending on the value of the accuracy of the measurements 8, A = A(8). 

We will now describe the step-by-step construction of the realization of the algorithm. Suppose an 
observation is made for any motion x(') c X. Any feedback w = (A,  b) ~ W(x( . ) )  is subject to 
reconstruction. 

Step i = 0. At the instant of time to, information comes to the observer in the form of a measurement 
y(to) of the state of motionx(t0). By puttingy = y(to) and z = y(to), the observer determines that realization 
of the method 

t o 
D8 (y, z) = (A~(to),  bs( to))  

at the instant of time to according to rule (3.2). 
The function 

l 0 
w~~ .) = D ~ ( y , z ) ,  t o < t < t  I 

which is constant in time, is taken as an approximation to the required feedback w in the time interval 
to <- t < tl. The Cauchy problem for the system-model 

~.(Z) = f ( z , z ( ~ ) ) + A s ( t . ) Z ( Z ) + b r ~ ( t . ) ,  t . < Z < t * ,  z ( t . )  = z (3.3) 

is then solved for the interval [t,, t*] = [to, tl] and the state z( t*)  of its solution is stored. 

Step i = 1. At the instant of time tl, information is fed to the observer in the form of a measurement 
y( t l )  of the state of the motionx(tl). Puttingy = y(tl) and z = z (q) ,  the observer determines the realization 
of the method 

I i  Dr~(y, Z) = (As ( t l ) ,  b~( t l ) )  

according to rule (3.2). 
The function 

w(i) q 
( t , . )  = D s ( y , z ) ,  tl < t < t  z 

which is constant in time, is taken as the approximation for the required feedback w in the time interval 
t I _< t < t2. The Cauchy problem (3.3) is then solved for the interval [t. ,  t*] = It1, t2] and the state z( t*)  
of the solution is stored. 

The following steps for i = 2, . . . ,  m - 1 are analogous to the step i = 1. Hence, a piecewise-constant 
in time realization of the method 

D~(y)  = wr~(t ) = w~i)(t), t i < t < t i +  1, i = 0 . . . . .  m - 1  (3.4) 

will be obtained successively throughout the course of the process (in the dynamics) up to the final instant 
of time tm = O. 

For the description of the operation of the algorithm in time it is clear that it can be implemented 
under real-time conditions. 
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Theorem 3. Suppose the regularization parameters tx = t~(15) and e = e(15) and the magnitude of the 
diameter A = A(15) of the partitioning of the time interval T satisfy the following compatibility condition 

(E(15) + 152 + A(15)1/2)0~(~)-1 ---> 0, E(15) ---> 0, et(8) --> 0 when 15 --, 0 

The algorithm D, consisting of the methods (3.4), then solves the restoration problem, that is, the 
convergence r~(x(.)) --, 0 holds for any observed motion x(.) s Xwhen  15 ---> 0 and, moreover, the strong 
convergence in E w~ --, w . (x ( . ) )  holds for the realizations of the algorithm w8 = D~(ys) when 15 ---> 0 
whatever realizations of the measurements Y8 ~ Y((x(.)) ,  15) occur here. 

Proof. We fix an arbitrary element x(.) e X and any relations 

a = a ( 1 5 ) ,  e=e (15 ) ,  a = a ( 1 5 )  

which satisfy the condition of the theorem. For prove the theorem, it is sufficient to show that, whatever 
the numerical sequence {15k} C [0, 150], 151, ---> 0 and the sequence of elements {Yk}, Yk ~ Y(x('),  15k), 
k ~ {1, 2, 3, ...}, the following convergence holds 

p[Dli~(yk), w.(x(.))]  ---> 0, k--) 0% w. = w.(x(.))  = (A., b . )  (3.5) 

We will now fix and sequences {15k} and {Yk} which satisfy the above-mentioned conditions and show 
that relations (3.5) hold. 

Taking account of the rule for the formation of a realization of the algorithm 

w k = Dsk(y k) = ( A  k, bk) 

the following estimate for the functional A k c a n  be obtained 

t 

Ak(t) = IIx(t) -zk(t)ll 2 + ~(15k)~k(x)dx < vk 
to 

tak(t)  = IIl&(t)ll l  2 + Ilbk(t)ll 2 -IIIa.(t)lll  2 -IIb.(t)ll 2 

V k ---- C , [ E ( ~ k )  + 15~ + A ( ~ k )  1/2] 

where C .  is a certain positive constant which is independent of k and is only determined a priori by 
the known data on the system and the problem; Zk is the motion of the system-model which corresponds 
to the feedback wk (The construction of this motion has been described in detail above.) 

From the above estimate we obtain 

max{tlx(t) - zk(t)ll 2 : t ~ T} _< v k + 2~(15k)(d - to)f~ o (3.6) 

~0 = max{lllAIII 2 § Ilbll 2 : A ~ P, b ~ Q} 

2 -1 Ilwkll~ _< IIw,[Ie + Vk~(15k) 
(3.7) 

Taking account of the weak compactness of the set Win the Hilbert space E, we can assume without 
loss in generality that, for a certain element w* e IV, 

w k ---, w* weakly in E (3.8)  

Then, for any t e T, we have the convergence in R n 

Zk(t) = zk(t; Wk) --"> x( t )  = x(t; W*) (3.9) 
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From relations (3.6) and (3.9), we then obtain the equalitiesx(t; w,) = x(t; w*), from which it follows 
that w* = w,. From the properties (3.7) and (3.8) and the last equality, we obtain the chain of inequalities 

[[w*lle -< liminfllwklle --- limsuPllwklle -< Ilw*lle, k ---> oo 

from which the convergence of the norms 

[Iwkll  IIw*ll  

in the Hilbert space E follows. 
If the weak convergence (3.8) is now taken into account, we obtain the convergence 

Hence, the convergence (3.5) holds. 

w k ---> w, strongly in E 

4. REMARKS 

1. The constraints on the parameters of the problem also ensure the convergence of the approximations 
of the feedback which have been found in the space Lq(T; R n• • Lq(T; R n) for any q E [1, oo). This 
follows from the convergence of the approximations in E and the boundedness of the set W in 
L~(T; R n • • L~(T; Rn). 

2. The results obtained also hold for a non-linear feedback of the form 

u[t] = A(t)r t o<t<O 

where q0 is a certain known function with the same properties as the functionf. At the same time, when 
solving the restoration problem by the static method, the formulation of Theorems 1 and 2 remains 
the same, and it is only necessary, when calculating the gradient of the functional (2.2) in the adjoint 
problem, to replace the expression A* (t)~g(t) by the expression J~p(t, x(t))A* (t)V(t), where J~(t, x) is the 
Jacobian of the vector function q0 = q0(t, x) with respect to the variable x. 

In solving the restoration problem by the dynamic method, the formulation of Theorem 3 remains 
as before, and it is only necessary to replace the termAsy in the expression for the functional H by the 
term Acp(t, y) and, on the right-hand side of the system-model, to replace the term A~(t)z(t) by 
A~(t)~p(t, z(t) ). 

3. The regularizing algorithms for solving the restoration problem which have been constructed 
possess the property of uniform regularizability in the sets of motions corresponding to the compact 
sets of permissible feedbacks. Suppose IV, is a subset of Wwhich is compact in E, and X,  is the set of 
all motions corresponding to the feedbacks from W,. Then, 

sup{ra(x(.)) :x(.)e X,}--~O, ~-+0  

4. In the problem being considered, as in similar problems which have been solved in [1, 15-30], for 
example, corresponding estimates of the rate of convergence of the methods can be determined and 
the convergences in stronger metrics can also be found. 

5. The results obtained here can easily be extended to extensive classes of problems in which the 
units are described by systems with distributed parameters (see [15-30], for example). 

6. In applications, it is often required that the corresponding operator for solving an inverse problem 
should possess the property of physical feasibility: the restoration results synchronize until the 
information entering into the input synchronizes. We note that the operator for solving the direct problem 
possesses this property. The property of the dynamic restoration of the feedback also possesses this 
property. The property of the physical feasibility of an operator for solving an inverse problem is found 
to be extremely important in situations when the results of the restoration are used in feedback systems 
and must be used in the system then and there throughout the course of a process (such is the state of 
affairs in automatic control systems). We note that a posteriori methods for the solution of inverse 
problems in dynamics, among which gradient methods are very widespread, do not, as a rule, possess 
the property of physical feasibility. 
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5.  E X A M P L E  

We will now present the results of numerical simulation using the dynamic restoration of feedback 
u[t]  = a ( t )x ( t )  in the dynamical system 

Yc(t) = x ( t ) s i n x ( t ) + u [ t ] ,  t o < t < O ,  X(to) = x o, x ~ R  

Restoration of feedbacks with the following functions: a( t ) ,  to <- t <_ O; a( t )  = 1 + sin2nt (a "smooth" 
feedback); a( t )  = t when to < t < tl; a ( t )  = ao - t when tl < t ___ O (feedback with a "break"); a ( t )  = a l  
when to --- t < tl and a( t )  = a2 when tl < t ___ O ("discontinuous" feedback), was carried out in accordance 
with the method described above. In this case, the a priori information 

P = [b l ,  b2] ,  - r  ~ 

was used for the feedback. 
The interference in the measurements was simulated by the relation 

y( t )  = x ( t ) + S s i n p t ,  p = eonst  

The following correspondences of the regularization parameters were adopted 

8 ( 8 )  ---- 0 ,  ~ ( 8 )  ---- 8 I/3 , A ( 8 )  = 8 

The results of the calculations on the restoration of the above-mentioned feedbacks for the following 
values of the parameters of the problem 

t0=0, 0 = I ,  x 0 = l ,  t l=0.5,  a 0 = l ,  a t = l ,  a2=2, b l=0 ,  b2=3, p = l .  

are shown in Fig. 1. 
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The restoring function (feedback) a = a(t), to --- t < O is shown by the solid curve, the result of 
restoration when 8 = 1 by the dashed curve and, when 8 = 0.1, by the dot-dash curve. 
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